

ST. LAWRENCE HIGH SCHOOL

27, BALLYGUNGE CIRCULAR ROAD

Clas	s : 12	Subject : PHYSICS	Term : SECOND TERM	Max Ma	rks : 80
Q1:	shell, then it is pro	of the electric field at a distance $r(\rho R)$ due to a uniformly charged spherical opportional to (2) $1/r$ (3) r^2 (4) $1/r^2$		Marks :	1
	1. 1				
	2. 2				
	3. 3				
	4.4		(This Answer is Correct)		
Q 2 :		two parallel equipotential surfaces A and B kept a small distance r apart from int charge of q coulomb is taken from the surface A to B. The amount of net (2) $q/(4\pi\epsilon_0 r^2)$ (3) $-q/(4\pi\epsilon_0 r^2)$ (4) 0		Marks :	1
	A Figure Q6	В			
	1. 1				
	2. 2				
	3.3				
	4 . 4		(This Answer is Correct)		
Q3:	Two capacitors C connecting them to (1) $5C_1$ =3 C_2	$_1$ and C_2 are charged to 120V and 200V respectively. It is found that by ogether the potential on each one can be made zero. Then (2) $3C_1$ = $5C_2$ (3) $3C_1$ + $5C_2$ =0 (4) $9C_1$ = $4C_2$		Marks :	1
	1. 1				
	2. 2		(This Answer is Correct)		
	3. 3				
	4.4				
Q4:	capacitances with	apacitor is filled with two dielectrics as shown in the Fig Q10. The ratio of out dielectric and with dielectric is $(2)(K_1+K_2)/2$ $(3)(K_1+K_2)/(K_1+K_2)$ $(4)(2(K_1+K_2))$		Marks :	1
	K; pla Figure Q10				
	1. 1				
	2. 2		(This Answer is Correct)		
	3.3				

 \underline{A} 800µF capacitor is charged at the steady rate of $50\mu\text{Cs}^{-1}.$ How long will it take to raise its potential to 10V? Marks: 1 Q5: (1) 160s (2) 50s (3) 10s (4) 500s (This Answer is Correct) **1**.1 2.2 3.3 4.4 Expression for energy density of a parallel plate capacitor in vacuum is Marks: 1 Q6: (1) $\varepsilon_0 E^2/2$ (2) $2\varepsilon_0 E^2/2$ (3) $\varepsilon_0 E^2$ (4) $\varepsilon_0 E/2$ (This Answer is Correct) **1**.1 2.2 3.3 4.4 Van de Graaff generator is used to Marks: 1 Q7: (1) store electrical energy (2) build up high voltages of few million volts (3) decelerate charged particle like electrons (4) do both Options 1 and 2 1. 1 (This Answer is Correct) **2**. 2 3.3 4.4 A wire is stretched so as to change its diameter by 0.25%. The percentage change in resistance is Marks: 1 Q8: (4) 0.5% (1) 4% (2) 2% (3) 1% 1. 1 2.2 (This Answer is Correct) **3.** 3 4.4

Q 9 : A parametriplate Laplaction is mine with two directions as shown in the rig Quo. The capacitances without different and with different is $(1) K_1 + K_2$ (2) $(K_1 + K_2)/2$ (3) $K_1 K_2/(K_1 + K_2)$ (4) $2(K_1 + K_2)$

A parallel plate capacitor is filled with two dielectrics as shown in the Fig Q10. The ratio of

1. 1

Marks: 1

	2. 2	(This Answer is Correct)	
	3. 3		
	4.4		
Q 10 :	Two electric cells each of $ggff$ 1.5V and internal resistance 2Ω are connected in parallel and this combination of cells is connected with an external resistance of 2Ω . What will be the current in the external circuit? (1) (149 $\frac{1}{2}$), (2) (173 $\frac{1}{2}$), (3) (1/2)A, (4) 1)A		Marks: 1
	1. 1		
	2. 2		
		(This Answer is Correct)	
	3. 3	(This Answer is defrect)	
	4.4		
Q 11 :	Unit of electron mobility is (1) m ² V ⁻¹ s ⁻¹ (2) m ² V s (3) m ² V s (4) m ² V ⁻¹ s 1 . 1 2 . 2 3 . 3 4 . 4	(This Answer is Correct)	Marks: 1
Q 12 :	Potential at a distance <i>r</i> from the <u>mid_point</u> of a dipole of length 2 <i>l</i> on the axis of it is (1) <i>V</i> is doubled (2) <i>I</i> is doubled (3) the diameter of the wire is doubled (4) the temperature of the wire is doubled 1 • 1 2 · 2 3 · 3 4 · 4	(This Answer is Correct)	Marks: 1
Q 13 :	In the circuit of Figure Q25, the current l_2 exceeds the current l_1 , by a factor of (1) 12 (2) 20 (3) 100 (4) 120 $ +30V $ $ +30V $ $ +5V $ $ +5V $ $ +5V $ $ +5V $ $ +7V $ $ +$		Marks: 1
	3. 3 4. 4	(This Answer is Correct)	
Q 14 :	Resistance in the two gaps of a meter bridge are 10Ω and 30Ω respectively. If the resistances are interchanged the balance point shifts by (1) 33.33cm (2) 66.67cm (3) 25cm (4) 50cm		Marks: 1

https://www.slscampuscare.in/QuestionBank/QuestionBankReport?menuid=501

Entab - CampusCare® | School ERP Software 2.2 3.3 (This Answer is Correct) 4.4 A long wire carries a steady current. It is bent into a circle of one turn and the magnetic field at the centre of the coil is B. It is then bent into a circular loop of n turns. The magnetic field at the centre of the coil is (1) nB (2) n^2B (3) 2nB (4) $2n^2B$ Marks: 1 Q 15: 1. 1 (This Answer is Correct) **2**. 2 3.3 4.4 The magnetic field due to a straight conductor of uniform cross-section of radius a and carrying Marks: 1 Q 16: a steady current is represented by B В a (3) (4) (This Answer is Correct) **1.** 1 2.2 3.3 4.4 $\mathfrak g$ α -particle and a proton having same momentum enter into a region of uniform magnetic field and move in circular paths. The ratio of the radii of curvature of their circular paths $\mathscr A_{\mathcal B}$ in the field is Marks: 1 Q 17: (1) 1 (2) 1/4 (3) 1/2 (4) 4 1. 1 2. 2 (This Answer is Correct) **3.** 3 4.4 In an ammeter, 0.5% of the main current passes through the galvanometer. If the resistance of the galvanometer is G, the resistance of the ammeter is Marks: 1 Q 18: (4) 199 G (1) G/200 (2) G/199 (3) 200G (This Answer is Correct) **1**.1

2.2

3. 3
 4. 4

Q 19 :	In a moving coil galvanometer of coil of n turns and area of A have a spring of stiffness k . If the coil is <u>defleted</u> by some angle φ <u>due</u> to flow of current I in uniform radial magnetic field B , then φ is given by (1) $NABI/k$ (2) $\underbrace{kIII(NAB)}_{M}$ (3) $\underbrace{kAII/(NB)}_{M}$ (4) $\underbrace{NBI/k/kA}_{M}$		Marks :	1
	1. 1	(This Answer is Correct)		
	2. 2	(
	3. 3			
	4. 4			
	4. 4			
Q 20 :	Magnetic dipole moment is <u>vectror</u> directed from		Marks :	1
Q 20 .	(1) south to north (2) north to south (3) east to west (4) west to east	(This Answer is Correct)		
		(This valence to contact)		
	2. 2			
	3. 3			
	4.4			
Q 21 :	If a current I flows through a loop of area. A and the strength of the pole thus generated is g_{ab} , the magnetic moment of the loop is (1) IA (2) IA^2 (3) $g_{ab}A$ (4) $g_{ab}A^2$		Marks :	1
	1.1	(This Answer is Correct)		
	2. 2			
	3. 3			
	4.4			
Q 22 :	The ratio of the magnetic moment to the angular moment of an orbiting electron (1) 2mL/e (2) em/(2L) (3) mLe (4) eL/(2m)		Marks :	1
	1. 1			
	2. 2			
	3. 3			
	4. 4	(This Answer is Correct)		
Q 23 :	The minimum value of magnetic moment of an electron rotating in a circular orbit is (1) $eb'(2\pi m)$ (2) $eb'(4\pi m)$ (3) $eb'(1m)$ (4) $4\pi m'(eh)$		Marks :	1
	1. 1			
	2. 2	(This Answer is Correct)		
	3.3			
	4. 4			
0.04	While entering a paramagnetic material from air, the spacing between the magnetic lines of		Marks :	1
Q 24 :	force (1) remains the same (2) decreases (3) increases (4) first increases then decreases		wars.	ı
	1. 1			
	2. 2	(This Answer is Correct)		

- 3.3
- 4.4

For a paramagnetic material, both χ and y_x depend upon (1) pressure (2) material (3) temperature Marks: 1 Q 25: (4) both material and temperature

- 1. 1
- 2.2
- 3.3
- 4.4

Marks: 1

Marks: 1

Marks: 1

The J-H curve for a paramagnetic material is represented by the figure Q 26:

- 1. 1
- 2.2
- **3.** 3
- 4.4

(This Answer is Correct)

When the key K in Figure Q46 is released, the current in C2 and the resulting magnetic field (1) increases from zero to maximum value (2) first increases, then decreases (3) remains same (4) decreases from the respective maximum to zero Q 27:

- 1. 1
- 2.2
- 3.3
- 4.4

A current passing through a coil of self inductance 2mH changes at a rate of 20mAs 4 . The emf induced in the coil is (1) $10\mu V$ (2) $40\mu V$ (3) 10mV (4) 40mVQ 28:

- 1. 1
- **2**. 2
- 3.3

(This Answer is Correct)

https://www.slscampuscare.in/QuestionBank/QuestionBankReport?menuid=501

Q 29 :	In 0.1s, the current in a coil increases from 1A to 1.5A. If inductance of coil is 60mH, then induced current in external resistance of 3Ω is (1) 1A (2) 0.5A (3) 0.2A (4) 0.1A		Marks :	1
	 1. 1 2. 2 			
	3. 3	(This Answer is Correct)		
	4. 4	(This Aliswer is Correct)		
Q 30 :	If an AC main supply is given to be 220V, what would be the average emf during a positive half-cycle? (1) 198V (2) 386V (3) 256V (4) None of these		Marks :	1
	1. 1	(This Answer is Correct)		
	2. 2			
	3. 3			
	4.4			
Q 31 :	The frequency of an alternating voltage of 120V amplitude is 50cycles/s. The mms value of the voltage is (1) 101.3V (2) 84.8V (3) 70.7V (4) 56.5V		Marks :	1
	1. 1			
	2. 2	(This Answer is Correct)		
	3. 3 4. 4			
Q 32 :	In an AC circuit, $I=100$ sin (200π f). The time required for the current to reach its peak value is (1) 0.01s (2) 0.005s (3) 0.0033s (4) 0.0025s		Marks :	1
	1. 1			
	2. 2			
	3. 3	(This Answer is Correct)		
	4. 4	(This Allawel is Collect)		
Q 33 :	In an L-R <u>circuit the</u> phase angle between the alternating voltage and current is 45° . The value of the inductive reactance is (1) $R/4$ (2) $R/2$ (3) R (4) data insufficient		Marks :	1
	1. 1			
	2. 2			
	3. 3	(This Answer is Correct)		
	4.4			
Q 34 :	In an L-C-R series AC circuit, the voltage across each of the components, L,C and R is 50 V. The voltage across the L–C combination is (1) $50V$ (2) $50\sqrt{2}V$ (3) $100V$ (4) $0V$		Marks :	1
	1. 1			
	2. 2			

https://www.slscampuscare.in/QuestionBank/QuestionBankReport?menuid=501

	4. 4	(This Answer is Correct)	
Q 35 :	It is desired to photograph the image of an object placed at a distance of 3m from a plane mirror. The camera which is at a distance of 4.5m from the mirror should be focussed for a distance of (1) 3m (2) 4m (3) 6m (4) 7.5m		Marks: 1
	2. 2		
	3. 3		
	4. 4	(This Answer is Correct)	
Q 36 :	What is the distance of a needle from a concave mirror of focal length 10cm for which a virtual image of twice its height is formed 2 (1) 2.5cm (2) 5cm (3) 8cm (4) 9.1cm		Marks: 1
	1. 1		
	2. 2	(This Answer is Correct)	
	3. 3		
	4.4		
Q 37 :	A beaker of depth a is half filled with olive oil of refractive index μ_1 and the other half is filled with water of refractive index μ_2 . The apparent depth of the beaker when viewed from above is (1) $g(\mu_1+\mu_2)(2\mu_1\mu_{-2})^{-1}$ (2) $0.5a\mu_1\mu_2(\mu_1+\mu_2)^{-1}$ (3) $g\mu_2\mu_2(\mu_1+\mu_2)^{-1}$ (4) $2a\mu_1\mu_2(\mu_1+\mu_2)^{-1}$		Marks: 1
	1.1	(This Answer is Correct)	
	2. 2		
	3. 3		
	4. 4		
Q 38 :	A ray of light strikes an air-glass interface such that a part of it is reflected back to air and the rest enters the glass as shown in Figure Q66. If the angle of refraction and the refractive index of glass with respect to air are r and μ respectively, then the value of α is (1) ϵ (2) μ sin ϵ (3) $\sin^{-1}(\mu \sin \alpha)$ (4) $\sin^{-1}(\sin(r/\mu))$		Marks: 1
	Incident Air Glass Figure Q66		
	1. 1		
	2. 2		
	3. 3	(This Answer is Correct)	
	4.4		
Q 39 :	In an optical fibre shown in Figure Q68, the correct relation between the indices of correctadding is (1) n1=n2 (2) n1>n2 (3) n1 <n2 (4)="" n1+n2="2</th"><th></th><th>Marks: 1</th></n2>		Marks: 1

	2. 2	(This Answer is Correct)		
	3.3	_		
	4. 4			
Q 40 :	The angle of incidence for a ray of light at a refracting surface of a prism is 45° . The angle of prism is 60° . If the ray suffers minimum deviation through the prism, the angle of minimum deviation and refractive index of the material of the prism are given respectively by (1) 30° ; $\sqrt{2}$ (2) 45° ; $\sqrt{2}$ (3) 30° ; $11/\sqrt{2}$ (4) 45° ; $11/\sqrt{2}$		Marks :	1
	1. 1	(This Answer is Correct)		
	2. 2	_		
	3.3			
	4.4			
Q 41 :	Two thin lenses of focal lengths f_1 and f_2 are kept in contact coaxially. The power of the combination is given by (1) $\sqrt{(f_1/f_2)}$ (2) $\sqrt{(f_2/f_1)}$ (3) $(f_1+f_2)/2$ (4) $(f_1+f_2)/(f_1f_2)$		Marks :	1
	1. 1			
	2. 2			
	3. 3			
	4. 4	(This Answer is Correct)		
Q 42 :	A parallel beam of light is incident on a solid transparent <u>sphere</u> . If a point image is produced at the back of the sphere, the refractive index of the material of the sphere is (1) 2.5 (2) 1.5 (3) 1.25 (4) 2		Marks:	1
	1. 1			
	2. 2			
	3. 3			
	4. 4	(This Answer is Correct)		
Q 43 :	Which option is correct for rays coming from an object at infinity incident on the lens as shown in Figure Q75? (1) Two images are formed (2) Continuous image is formed between focal points of the two lenses (3) One image is formed (4) None of Options 1 to 3		Marks :	1
	μ ₂ Figure Q75			
	1.1	(This Answer is Correct)		
	2. 2			
	3.3			
	4. 4			
Q 44 :	A ray incident at 15' on one refracting face of a prism of angle 60' suffers a deviation off 55'. What is the angle of emergence?		Marks :	1
	(1) 95' (2) 45' (3) 30' (4) None of Options 1 to 3			
	1. 1			

https://www.slscampuscare.in/QuestionBank/QuestionBankReport?menuid=501

	3. 3		
	4 . 4	(This Answer is Correct)	
Q 45 :	The spectral lines appear on the lower frequency side of the unmodified spectral line are known as (1) Stokes line (2) anti-Stokes line (3) Raman line (4) None of Options 1 to 4 1 - 1 2 - 2	Mar (This Answer is Correct)	ks : 1
	2. 2 3. 3 4. 4		
Q 46 :	The scattering of light by molecules, without change of frequency on wavelength is known as (1) Rayleigh scattering (2) non-Rayleigh scattering (3) scattering (4) Raman scattering 1 - 1 2 . 2 3 . 3 4 . 4	Mar (This Answer is Correct)	ks : 1
Q 47 :	What is the angle between the electric dipole moment and the electric field due to it on the axial line? (1) 0' (2) 90' (3) 45' (4) 180' 1 - 1 2 . 2 3 . 3 4 . 4	Mar (This Answer is Correct)	ks : 1
Q 48 :	The dimensional formula of electric intensity is (1) [MLT ⁻² A ⁻¹] (2) [MLT ⁻³ A ⁻¹] (3) [ML ² T ⁻³ A ⁻¹] (4) [ML ² T ⁻³ A ⁻²] 1 . 1 2 . 2 3 . 3 4 . 4	Mar (This Answer is Correct)	ks : 1
Q 49 :	If the medium between two shells in Fig Q13 is filled up with a dielectric constant K , then its capacitance is $(1) \frac{4\pi \varepsilon_2 K \mathcal{E}(K) - a)}{(3) \frac{4\pi \varepsilon_2 K \mathcal{E}(K) - a)}{(4) \frac{4\pi \varepsilon_2 K}{(4)}}} = \frac{(2) \frac{4\pi \varepsilon_2 \mathcal{E}(K(b-a))^{-1}}{(4) \frac{4\pi \varepsilon_2 K}{(4)}} = \frac{(4) \frac{4\pi \varepsilon_2 K}{(4)} \frac{4\pi \varepsilon_2 K}{(4)}}{(4) \frac{4\pi \varepsilon_2 K}{(4)}} = \frac{(4) \frac{4\pi \varepsilon_2 K}{(4)} \frac{4\pi \varepsilon_2 K}{(4)}}{(4) \frac{4\pi \varepsilon_2 K}{(4)}} = \frac{(4) \frac{4\pi \varepsilon_2 K}{(4)} \frac{4\pi \varepsilon_2 K}{(4)}}{(4) \frac{4\pi \varepsilon_2 K}{(4)}} = \frac{(4) \frac{4\pi \varepsilon_2 K}{(4)} \frac{4\pi \varepsilon_2 K}{(4)}}{(4) \frac{4\pi \varepsilon_2 K}{(4)}} = \frac{(4) \frac{4\pi \varepsilon_2 K}{(4)} \frac{4\pi \varepsilon_2 K}{(4)}}{(4) \frac{4\pi \varepsilon_2 K}{(4)}} = \frac{(4) \frac{4\pi \varepsilon_2 K}{(4)} \frac{4\pi \varepsilon_2 K}{(4)}}{(4) \frac{4\pi \varepsilon_2 K}{(4)}} = \frac{(4) \frac{4\pi \varepsilon_2 K}{(4)} \frac{4\pi \varepsilon_2 K}{(4)}}{(4) \frac{4\pi \varepsilon_2 K}{(4)}} = \frac{(4) \frac{4\pi \varepsilon_2 K}{(4)} \frac{4\pi \varepsilon_2 K}{(4)}}{(4) \frac{4\pi \varepsilon_2 K}{(4)}} = \frac{(4) \frac{4\pi \varepsilon_2 K}{(4)} \frac{4\pi \varepsilon_2 K}{(4)}}{(4) \frac{4\pi \varepsilon_2 K}{(4)}} = \frac{(4) \frac{4\pi \varepsilon_2 K}{(4)} \frac{4\pi \varepsilon_2 K}{(4)}}{(4) \frac{4\pi \varepsilon_2 K}{(4)}} = \frac{(4) \frac{4\pi \varepsilon_2 K}{(4)} \frac{4\pi \varepsilon_2 K}{(4)}}{(4) \frac{4\pi \varepsilon_2 K}{(4)}} = \frac{(4) \frac{4\pi \varepsilon_2 K}{(4)} \frac{4\pi \varepsilon_2 K}{(4)}}{(4) \frac{4\pi \varepsilon_2 K}{(4)}} = \frac{(4) \frac{4\pi \varepsilon_2 K}{(4)} \frac{4\pi \varepsilon_2 K}{(4)}}{(4) \frac{4\pi \varepsilon_2 K}{(4)}} = \frac{(4) \frac{4\pi \varepsilon_2 K}{(4)} \frac{4\pi \varepsilon_2 K}{(4)}}{(4) \frac{4\pi \varepsilon_2 K}{(4)}} = \frac{(4) \frac{4\pi \varepsilon_2 K}{(4)} \frac{4\pi \varepsilon_2 K}{(4)}}{(4) \frac{4\pi \varepsilon_2 K}{(4)}} = \frac{(4) \frac{4\pi \varepsilon_2 K}{(4)} \frac{4\pi \varepsilon_2 K}{(4)}}{(4) \frac{4\pi \varepsilon_2 K}{(4)}} = \frac{(4) \frac{4\pi \varepsilon_2 K}{(4)} \frac{4\pi \varepsilon_2 K}{(4)} = \frac{(4) \frac{4\pi \varepsilon_2 K}{(4)} \frac{4\pi \varepsilon_2 K}{(4)} = \frac{(4) \frac{4\pi \varepsilon_2 K}{(4)}} = \frac{(4) \frac{4\pi \varepsilon_2 K}{(4)} \frac{4\pi \varepsilon_2 K}{(4)} = (4)$	Mar (This Answer is Correct)	ks : 1
	•••		

	3. 3		
	4.4		
Q 50 :	The equivalent resistance between the points A and B is in Figure Q16 is (1) 3Ω (2) 4Ω (3) 6Ω (4) 11Ω		Marks: 1
	A 20 B B Figure Q16		
	1. 1		
	2. 2	(This Answer is Correct)	
	3. 3	_	
	4. 4		
Q 51 :	Potentiometer measures the potential difference more accurately than a voltmeter because (1) it has a wire of high resistance (2) it has a wire of low resistance (3) it does not draw current from external circuit (4) it draws a heavy current from external circuit		Marks: 1
	1. 1		
	2. 2		
	3. 3	(This Answer is Correct)	
	4.4		
Q 52 :	Name the material for which magnetic susceptibility is high and positive. (1) Ferromagnetic (2) Paramagnetic (3) Diamagnetic (4) Non-magnetic		Marks: 1
	1. 1	(This Answer is Correct)	
	2. 2		
	3. 3		
	4.4		
Q 53 :	The net magnetic flux through any closed surface, kept in a magnetic field is (1) zero (2) $\mu\sigma/(4\pi)$ (3) $4\pi\mu_0$ (4) $4\mu\sigma/\pi$	_	Marks: 1
	1. 1	(This Answer is Correct)	
	2. 2		
	3. 3		
	4.4		

Q 54: 1

Which of the graphs shows the correct variataion of the capacitive reactance X_c with frequency (1) (2) (3) (4) (4) 1. 1 2. 2 3. 3	Marks : √ (This Answer is Correct)
Q 55: Resonant circuits are used in (1) tuning mechanism of radios (2) TV sets (3) both for TV set and tuning mechanism of radios (4) neither for TV sets nor for tuning mechanism of radios	Marks: 1
1. 1 2. 2 3. 3 4. 4	(This Answer is Correct)
The refracting angle of a prism is A, and refractive index of the material of the prism is cot (A/2). The angle of minimum deviation is (1) 180° - 3A (2) 180° - 2A (3) 90° - A (4) 180° + 2A 1 . 1 2 . 2 3 . 3 4 . 4	Marks: 1
Q 57: If red light is used instead of blue light in order to determine the focal length a lens, then the focal length (1) increases (2) decreases (3) remains same (4) cannot be determined 1	Marks: 1
A monochromatic light is incident on one face of a prism at an angle of incidence (=60°. Which of given statement is correct? (1) Dispersion takes place (2) Deviation takes place (3) Both dispersion and deviation take place (4) Neither dispersion nor deviation takes place	Marks: 1

Q 59 :	A sphere of radius 10cm has an unknown charge. If the electric field 20cm from the centre of the sphere is 2x10 ⁴ N/C and points <u>radially</u> inward. What is the net charge on the sphere? (1) 88.9nC (2) -88.9nC (3) 0 (4) 90nC		Marks :	1
	1. 1			
	2. 2	(This Answer is Correct)		
	3.3	_		
	4.4			
Q 60 :	Potential at a distance r from the $\underline{m(d,p_0)m!}$ of a dipole of length $2l$ on the axis of it is (1) 0 (2) $\{1(\frac{l}{4}\pi\epsilon_0)\}\{p(r^2-l^2)\}$ (3) $\{1(\frac{l}{4}\pi\epsilon_0)\}\{2p(r^2-l^2)\}$ (4) $p(r^2-l^2)$		Marks :	1
	1. 1			
	2. 2	(This Answer is Correct)		
	3.3			
	4. 4			
Q 61 :	A thin spherical conducting shell of radius R has a charge q . Another charge Q is placed at the centre of the shell. The electrostatic potential at a <u>poing</u> P at a distance $R/2$ from the centre of the shell is (1) $2Q([4\pi\epsilon_0R)$ (2) $2(Q-q)(4\pi\epsilon_0R)^{-1}$ (3) $(2Q+q)[4\pi\epsilon_0R)^{-1}$ (4) $2(Q+q)[4\pi\epsilon_0R)^{-1}$		Marks :	1
	1. 1			
	2. 2			
	3. 3	(This Answer is Correct)		
	4.4			
Q 62 :	If the potential difference between the plates of a capacitor is increased by 20%, the energy stored in the capacitor increases by exactly (1) 20% (2) 22% (3) 40% (4) 44%		Marks:	1
	1. 1			
	2. 2			
	3. 3			
	4. 4	(This Answer is Correct)		
Q 63 :	Two condensers C_1 and C_2 in a circuit are joined as shown in the Fig Q11. The potential of point A is V_1 and that of B is V_2 . The potential of point D is $(1) \ V_1 + V_2)/2 \qquad (2) \ (C_1 \vee V_2 + C_2 \vee V_1)(C_1 + C_2)^{-1} \qquad (4) \ (C_2 \vee V_1 - C_1 \vee V_2)(C_1 + C_2)^{-1}$		Marks :	1
	$ \begin{array}{c cccc} A & C_1 & D & C_2 & B \\ \hline V_1 & & & & & & & & & \\ \hline V_1 & & & & & & & & & & \\ \hline Figure Q11 & & & & & & & & & \\ \end{array} $			
	1. 1			
	2. 2	(This Answer is Correct)		
	3. 3			
	4 4			

Q 64 :	A set of n identical resistors, each of resistance $R \underset{\longrightarrow}{ohm}$ when connected in series, has effective resistance X ohm and when connected in parallel the effective resistance is Y ohm. Then the resistance R is given by (1) $\chi(XY)$ (2) $Y \stackrel{\vee}{\vee} X$ (3) $X \stackrel{\vee}{\vee} Y$ (4) X^2Y^2		Marks: 1
	1. 1	(This Answer is Correct)	
	2. 2	_	
	3.3		
	4.4		
Q 65 :	A galvanometer of resistance R is connected to an electric circuit. The main current in the circuit is k times the maximum current that the galvanometer can withstand. The maximum value of the shunt resistance that should be used across the galvanometer is (1) $\frac{k}{k!}$ (2) $\frac{(k-1)R}{k!}$ (3) $\frac{R}{k!}$ (4) $\frac{R}{k!}$ (4) $\frac{R}{k!}$		Marks: 1
	1. 1		
	2. 2		
	3. 3		
	4 . 4	(This Answer is Correct)	
Q 66 :	A group of N cells whose emt varies directly with the internal resistance as per the equation $E_{N}=1.5(y_{N},y_{N})$ connected as shown in Figure 0.22. The current t in the circuit is (1) 0.51A (2) 5.1A (3) 0.15A (4) 1.5A		Marks: 1
	1. 1		
	2. 2		
	3.3		
	4. 4	(This Answer is Correct)	
Q 67 :	In the circuit of Figure Q26, the source of emf_E has negligible internal resistance. C is the midpoint of the potentiometer wire AB. The resistance of the voltmeter V is not very high compared to that of the potentiomenter wire. Then the voltmeter reading is (1) E (2) E/2 (3) greater than E/2 (4) less than E/2		Marks: 1
	Figure Q26		
	1. 1		
	2. 2		
	3.3		

Q 68:

A potentiometer wire is 100cm long and a constant potential difference is maintained across it. Two cells are connected in series first to support one another and then in opposite direction. The balance points are obtained at 50cm and 10cm from the positive end of the wire in two cases. The ratio of emf is (1) 5.4 (2) 3.4 (3) 3.2 (4) 5:1

1. 1

Marks: 1

(This Answer is Correct)

	2 .	2			
	3	. 3	(This Answer is Correct)		
	4 .	4	_		
Q 69 :		Resistances P and Q are connected in the gaps of metre-bridge. The balancing point is obtained at (1/3) m , from the zero end. If a 6 Ω resistance is connected in series with P, the balance point shifts to (2/3) m , from the same end. P and Q (1) agg 4 Ω , 2 Ω (2) are 2 Ω , 4 Ω (3) could be both Options 1 and 2 (4) are neither of Options 1 and 2		Marks :	1
	1.	. 1			
	2 .	2			
	3 .	3			
	4	. 4	(This Answer is Correct)		
Q 70 :		A uniform electric field and a uniform magnetic field are acting along the same direction in a certain region. If an electron is projected in the region such that its velocity is pointed along the direction of fields, then the electron (1) jumps towards right of direction of motion (2) spead decreases (3) spead increases (4) jumps towards left of direction of motion		Marks :	1
	1.	. 1			
	2	. 2	(This Answer is Correct)		
	3 .	3			
	4 .	4			
Q 71 :	3 .	In Figure Q35, X and Y are two long straight parallel conductors each carrying current of 2A. The force on each conductor is F newtons. When the current in each changed to 1A and reversed in direction (1) F/4 and unchanged in direction (2) F/2 and reversed in direction (3) F/2 and unchanged in direction (4) F/4 and reversed in direction X 2A	(This Answer is Correct)	Marks :	1
Q 72 :	4	A helicopter rises vertically with a speed 100m/s. If the helicopter is 10m long and the horizontal component of earth's magnetic field is 5x10Wb/sg,m, then the induced em/, between the tip of the nose to the tail of the helicopter is (1) 50V (2) 0.5V (3) 5V (4) 25V		Marks :	1
		1			
		2	(This Angueric Correct)		
		. 3	(This Answer is Correct)		
	4 .	4			
Q 73 :		The expression for the magnetic energy stored in a solenoid in terms of magnetic field B , area A and length I of the solenoid, is (1) $BAI(I2\mu_0)$ (2) $B^2AI/I(2\mu_0)$ (3) B^2AI/I_0 (4) BA^2I/I_0		Marks :	1

Answer is Correct
s Answer is Correct

- **1**.1
- 2.2
- 3.3
- 4.4

Q 74:

What is the angle between the electric dipole moment and the electric field due to it on the axial line?

- 1. 1
- 2.2
- **3.** 3
- 4.4

(This Answer is Correct)

A resistance of 300Ω and inductance of $(1/\pi)$ hency is connected in series to an AC voltage of 20V and frequency 200Hz. The phase angle between the voltage and current is (1) tan-1(4/3) (2) tan-1(3/4) (3) tan-1(3/2) (4) tan-1(2/5) Q 75:

- **1**.1
- 2.2
- 3.3
- 4.4

Marks: 1

Marks: 1

Marks: 1

Marks: 1

(This Answer is Correct)

Q 76:

In Figure Q63, the height H_1 of the object is +2.5cm. The height H_2 of the image is (1) -5cm (2) +7.5cm (4) -7.5cm

- **1** . 1 2.2
- 3.3
- 4.4

(This Answer is Correct)

An object is approaching a convex mirror. The ratio of the velocities of the object and its image, which is magnified by m times, is (1) -1/m² (2) m² (3) -m (4) 1/mQ 77:

(This Answer is Correct)

- **1**.1
- 2.2
- 3.3

Q 78 :	A ray of light is incident at a parallel slab of glass-water interface at an anglei. The ray emerges in air parallel to the surface of water as shown in Figure Q67. The value of refractive index of glass is (1) (4/3)sin/ (2) 1/sin/ (3) 4/3 (4) 1 Air Water Water	Marks: 1
	1. 1 2. 2 3. 3 4. 4	Answer is Correct)
Q 79 :	A plang-convex lens fits exactly into a plang-concave lens. Their plane surfaces are parallel to each other. If lenses are made of different materials of refractive indices μ₁ and μ₂ and R is the radius of curvature of the curved surface of the lenses, then the focal length of the combination is (1) 0.5R/(μ₁+μ₂) (2) 0.5R/(μ₁-μ₂) (3) 1.25R/(μ₁-μ₂) (4) 2R/(μ₂-μ₁) 1. 1 2. 2 3. 3 4. 4	Marks: 1 Answer is Correct)
Q 80 :	The ratio of powers of a thin convex and thin concave lenses is 3/2. When they are in contact, the equivalent focal length is 30cm. Their individual focal lengths are (1) 75cm50cm (2) 10cm, -15cm (3) 15cm, -10cm (4) 50cm, -75cm 1 . 1 2 . 2 3 . 3 4 . 4	Marks: 1 Answer is Correct)