

ST. LAWRENCE HIGH SCHOOL

Solution

Full Marks: 80 Time: 3 Hrs.

Sub: MathematicsClass: XI Date: 08/08/2019

GROUP: A

Select the correct alternatives:

1x8 = 8

- 1.a) Which one is true?
 - i) 2+3i>1+4i ii) 3+3i>6+2i iii) 3+9i>5+6i iv) None of these
- The least positive integral value of n so that $\left(\frac{1+i}{1-i}\right)^n = 1$ is b)
- iii) 3 iv) none of these
- c) If $\sin 49^0 = \frac{3}{4}$; then the value of $\sin 581^0$ is
 - i) $\frac{\sqrt{7}}{4}$ ii) $-\frac{\sqrt{7}}{4}$ iii) $\frac{7}{2}$ iv) none of these
- If $A \subseteq B$ and $B \subseteq A$ then d)
 - i) $A = \phi$ ii) $A \cap B = \phi$ iii) A = B iv) none of these
- $A B = \phi$ iff e)
 - i) $A \neq B$ ii) $A \subset B$ iii) $B \subset A$ iv) $A \cap B = \phi$
- If $\tan x = \frac{b}{a}$; then the value of $(a^2 + b^2)\sin 2x$ is f)
 - ii) 2ab iii) $\frac{a}{b}$ iv) $\frac{2a}{b}$
- The acute angle between the lines $x + y\sqrt{3} + 7 = 0$ and $x\sqrt{3} y + 8 = 0$ is g)
 - a) 45°
- ii) 90°
- iii) 30^{0} iv) 60^{0}
- The slope of the straight line joining the points $(\sqrt{3},1)$ and $(-3,-\sqrt{3})$ is h)
 - i) 1
- ii) $\sqrt{3}$ iv) $\frac{1}{\sqrt{3}}$ iv) $-\frac{1}{\sqrt{3}}$

- - I L. Wind of

Answer any six questions :

For any two sets A and B; prove that $(A \cap B)' = A' \cup B'$. 2.

Refer page 14.

- If $A = \{x/-1 \le x \le 2\}$ and $B = \{x/0 \le x \le 4\}$ find
 - a) A-B
- b) $(A \cup B) (A \cap B)$

Refer page 22, example -14.

Prove that $(a+b\omega+c\omega^2)^3+(a+b\omega^2+c\omega)^3=27abc$ if a+b+c=0 and ω is an imaginary cube root of unity.

n= atbutew2, y= atbw2+ew.

L'HS, n3+y3 = (n+y) (n2+ny+y2)=[2a+b(w+w2)+e(w2+w)] [a(1+w)+b(1-w2)+2ew2][a(1+w2)+2.bw+e(w2+1)] = (2a-b-c) w2 (2e-a-b) · w (2b-a-c) =(2a-b-e)(2e-a-b)(2b-a-e) = 8a.3e.3b = 27abe = R.H.J.5. If show that $amp(\frac{z_1}{z_2}) = amp z_1 - amp z_2$

 $\frac{Z_{1}}{Z_{2}} = \frac{1+2J3}{J3-1} = \frac{(1+2J3)(J3+2)}{(J3-2)(J3+2)} = 2$

 $arg \frac{21}{22} = tam^{-1}(\frac{1}{0}) = \frac{\pi}{2}$, $arg 2_1 - arg 2_2 = \frac{\pi}{3} + \frac{\pi}{6} = \frac{\pi}{2}$

6. Solve by Sridhar Acharyya's formula: $6x^2 - (18+5i)x + 18 + i = 0(i = \sqrt{-1})$ $N = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{(18+5i)^2 + \sqrt{18+5a^2} - \sqrt{18+5a^2}}{2a} = \frac{(18+5a^2)^2 - \sqrt{18+5a^2}}{2a}$ $= (1845û) \pm \sqrt{3244186û + 25û^2 - 482 - 24û}$

- The sum of n terms of two A.P's are in the ratio (4n-13):(3n+10). Find the ratio of 7. their 9th terms. Refer page 393, example- 11.
- Find the sum of the series upto n terms: 1+5+12+22+35+... to n term.

Sn=1+5+12+22+35+...+ dn.

C) $\frac{3n}{0} = 1 + 5 + 12 + 22 + \cdots + 4n - 1 + 4n$.

C) $\frac{3n}{0} = 1 + 9 + 7 + 10 + 13 + \cdots + 4n + 4n$.

: $4n = \frac{3n^2}{2} \cdot 3n = \frac{1}{2} t_n = \frac{1}{2} n^2 (n+1)$

9. Find, graphically, the solution set of the following linear inequation:

$$2x + 5y \le 40$$
$$x + y \le 11$$
$$x \ge 0, y \ge 0$$

Refer page 322, example-43.

GROUP: C

Answer an six questions:

6x4=24

10. Evaluate $\tan 70^{\circ} - \tan 50^{\circ} + \tan 10^{\circ}$

Refer page 980, problem 13

11. If $p\sin\theta = q\sin(120^0 + \theta) = r\sin(240^0 + \theta)$; find the value of pq + qr + rp.

12. If
$$\alpha, \beta, \gamma$$
 are in A.P.; show that $\cot \beta = \frac{\sin \alpha - \sin \gamma}{\cos \gamma - \cos \alpha}$

$$\frac{d+8=2\beta}{8m d-\delta m 8} = \frac{2 \delta m}{2} \frac{d-8}{2} \frac{\cos \frac{d+8}{2}}{\sin \frac{d-8}{2}} = \frac{\cot \frac{d+8}{2}}{2} = \cot \frac{d+8}{2}$$

$$\frac{\cos 8 - \cot d}{2 \delta m} \frac{d+8}{2} \frac{\sin \frac{d-8}{2}}{\sin \frac{d-8}{2}} = \frac{\cot \frac{d+8}{2}}{2} = \cot \frac{d+8}{2}$$

13. If
$$\tan \beta = \frac{\sin \alpha \cos \alpha}{2 + \cos^2 \alpha}$$
; prove that $3 \tan(\alpha - \beta) = 2 \tan \alpha$

Refer page 125, example-13

14. Show that
$$\sin^3 \theta + \sin^3 (120^0 + \theta) + \sin^3 (240^0 + \theta) = -\frac{3}{4} \sin 3\theta$$

Refer page 143, example-11

15. If
$$\tan(A+B) = 3 \tan A$$
; show that $\sin(2A+2B) + \sin 2A = 2 \sin 2B$.

Refer page 145, example- 20

16. Find the value of θ for which $\sin \theta \sin \left(\theta - \frac{\pi}{3}\right)$ is maximum.

Refer page 135, example- 13

17. If
$$\tan(\alpha - \beta) = 1$$
; $\sec(\alpha + \beta) = \frac{2}{\sqrt{3}}$; find positive magnitudes of α and β .

Refer page 113, example -13

GROUP: D

Answer any six questions:

6x4=24

- 18. The ratio of the distances of a moving point from the points (3,4) and (1,–2) is 2:3; find the locus of the moving point. Refer page 544, example 33.
- 19. Find the ratio in which the straight line 3x+4y=21 divides the join of (-9,5) and (7,9). Refer page 468, example-13.
- 20. Find the equation of the straight line which passes through the intersection of the straight lines 2x+3y=5 and 3x+5y=7 and makes equal positive intercepts upon the co-ordinate axes. Refer page 469, example- 16.
- 21. Find the equation of the straight line passing through the point (2,-3) and parallel to the straight line 3x-4y=0. Refer page 539, example-4.
- 22. Find the distance of the point (3,5) from the line 2x+3y=14 measured parallel to the line x-2y=1. Refer page 542, example-12.
- 23. A ray of light through (8,3) is reflected at (14,0) on the x-axis. Find the equation of the reflected ray. Slope of $AP = \frac{3-0}{8-14} = -\frac{1}{2}$ $\angle OAP = \angle XAL$.

$$\frac{1}{\sqrt{1000}} \left(\frac{1}{\sqrt{100}} \right) = \frac{1}{\sqrt{1000}} = \frac{1}{\sqrt{10$$

- The co-ordinates of one vertex of an equilateral triangle are (2,3) and the equation of its opposite side is x+y=2. Find the equation of its other sides. Equation of AB, AC with slope m passing through (2,3) is y-3=m(n-2)=)mn-y-2m+3=0. AABe is equilateral ,-'. tan $60^0=|\frac{m+1}{m-1}|=)m=2+\sqrt{3}$. (2+ $\sqrt{3}$) $n-y-2(2+\sqrt{3})+3=0$ and $(2-\sqrt{3})n-y-2(2-\sqrt{3})+3=0$.
 - 25. Find the equation of the straight line that passes through (-1,2) and perpendicular to the line 2x-3y+1=0. Refer page 540, example-5.

27/8/19